On finite groups all of whose bi-Cayley graphs of bounded valency are integral

Document Type : Research Paper


University of Larestan, 74317-16137, Lar, Iran


Let $k\geq 1$ be an integer and $\mathcal{I}_k$ be‎ ‎the set of all finite groups $G$ such that every bi-Cayley graph BCay(G,S) of $G$ with respect to‎ ‎subset $S$ of length $1\leq |S|\leq k$ is integral‎. ‎Let $k\geq 3$‎. ‎We prove that a finite group $G$ belongs to $\mathcal{I}_k$ if and‎ ‎only if $G\cong\Bbb Z_3$‎, ‎$\Bbb Z_2^r$ for some integer $r$‎, ‎or $S_3$‎.


Main Subjects

[1] O. Ahmadi, N. Alon, L. F. Blake and I. E. Shparlinski, Graphs with integral spectrum, Linear Algebra Appl., 430
(2009) 547–552.
[2] M. Arezoomand and B. Taeri, On the characteristic polynomial of n-Cayley digraphs, Electron. J. Combin., 20
(2013) pp. 14.
[3] M. Arezoomand and B. Taeri, A classification of finite groups with integral bi-Cayley graphs, Trans. Comb., 4
(2015) 55–61.
[4] M. Arezoomand and B. Taeri, Finite BCI-groups are solvable, Int. J. Group Theory, 5 (2016) 1–6.
[5] M. Arezoomand and B. Taeri, Finite groups admitting a connected cubic integral bi-Cayley graph, Alg. Struc. Appl.,
5 (2018) 35–43.
[6] K. Baliňska, D. Cvetkovič, Z. Radosavljevič, S. Simič and D. Stevanovič, A survey on integral graphs, Univ. Beograd
Publ. Elektrotehn. Fak. Ser. Mat., 13 (2002) 42–65.
[7] I. Estélyi and I. Kovács, On groups all of whose undirected Cayley graphs of bounded valency are integral, Electron.
J. Combin., 21 no.4 (2014) pp. 11.
[8] Y.-Q Feng and I. Kovács, On finite groups with prescribed two-generator subgroups and integral Cayley graphs, J.
Group Theory, https://www.degruyter.com/document/doi/10.1515/jgth-2020-0094/html.
[9] GAP - Groups, Algorithms, Programming, a System for Computational Discrete Algebra, Version 4.6.5, 2013,
[10] F. Harary and A. J. Schwenk, Which Graphs Have Integral Spectra?, Lecture Notes in Mathematics, 406 Springer,
Berlin, (1974) 45-51.
[11] Z. P. Lu, C. Q. Wang and M. Y. Xu, Semisymmetric cubic graphs constructed from bi-Cayley graphs of An, Ars
Combin., 80 (2006) 177–187.
[12] X. Ma and K. Wang, On finite groups all of whose cubic Cayley graphs are integral, J. Algebra Appl., 15 (2016) pp.