[1] R. Anstee, L. Ronyai and A. Sali, Shattering news, Graphs Combin., 18 (2002) 59–73.
[2] L. Beaudou, P. Dankelmann, F. Foucaud, M. A. Henning, A. Mary and A. Parreau, Bounding the order of a graph
using its diameter and metric dimension: a study through tree decomposition and VC dimension, SIAM J. Discrete
Math., 32 (2018) 902–918.
[3] C. Berge, Graphs and hypergraphs, Translated from the French by Edward Minieka, North-Holland Mathematical
Library, 6, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York,
1973.
[4] B. Bollobas, Combinatorics: et systems, hypergraphs, families of vectors and combinatorial probability, Cambridge
University Press, Cambridge, 1986.
[5] N. Bousquet, S. Thomasse, VC-dimension and Erdos-Posa property, Discrete Math., 338 (2015) 2302–2317.
[6] A. Bretto, Hypergraph theory, an introduction, Mathematical Engineering, Springer, Cham, 2013.
[7] V. D. Chepoi, B. Estellon and Y. Vaxes, Covering planar graphs with a fixed number of balls, Discrete Comput.
Geom., 37 (2007) 237–244.
[8] K. Ch. Das, A sharp upper bound for the number of spanning trees of a graph, Graphs Combin., 23 (2007) 625–632.
[9] R. Diestel, Graph Theory, Third edition. Graduate Texts in Mathematics, 173, Springer-Verlag, Berlin, 2005.
[10] L. Feng, G. Yu, Z. Jiang and L. Ren, Sharp upper bounds for the number of spanning trees of a graph, Appl. Anal.
Discrete Math., 2 (2008) 255–259.
[11] G. R. Grimmett, An upper bound for the number of spanning trees of a graph, Discrete Math., 16 (1976) 323–324.
[12] S. Jukna, Extremal Combinatorics. With Applications in Computer Science, 2nd ed., Springer, Heidelberg, 2011.
[13] E. Kranakis, D. Krizanc, B. Ruf, J. Urrutia and G. Woeginger, The VC-dimension of set systems defined by graphs,
Discrete Appl. Math., 77 (1997) 237–257.
[14] E. Kranakis, D. Krizanc and G. Woeginger, VC-dimensions for graphs, in: M. Nagl, editor, Graph-theoretic concepts
in computer science, LNCS 1017, (1995) 1–13.
[15] J. Li, W. C. Shiu and A. Chang, The number of spanning trees of a graph, Appl. Math. Lett., 23 (2010) 286–290.
[16] J. Matousek, Lectures on discrete geometry, Graduate Texts in Mathematics, 212, Springer-Verlag, New York, 2002.
[17] A. Mofidi, On some dynamical aspects of NIP theories, Arch. Math. Logic, 57 (2018) 37–71.
[18] A. Mofidi, On partial cubes, well-graded families and their duals with some applications in graphs, Discrete Appl.
Math., 283 (2020) 207–230.