Certain classes of complementary equienergetic graphs

Document Type : Research Paper

Authors

Department of Mathematics, Karnatak University, Pavate Nagar, Dharwad - 580003, India

Abstract

The energy of a graph is the sum of the absolute values of the eigenvalues of a graph‎. ‎Two graphs are said to be equienergetic if they have same energy‎. ‎A graph is said to be complementary equienergetic if it is equienergetic with its complement‎. ‎Recently several complementary equienergetic graphs have been identified‎. ‎In this paper‎, ‎we characterize the cycles‎, ‎paths‎, ‎complete bipartite regular graphs and iterated line graphs of regular graphs‎, ‎which are complementary equienergetic‎.
.

Keywords

Main Subjects


[1] A. Ali, S. Elumalai, T. Mansour and M. A. Rostami, On the complementary equienergetic graphs, MATCH Commun.
Math. Comput. Chem., 83 (2020) 555–570.
[2] R. Balakrishnan, The energy of a graph, Linear Algebra Appl., 387 (2004) 287–295.
[3] R. B. Bapat, Graphs and Matrices, Springer, New York, 1988.
[4] A. Berman and X. D. Zhang, On the spectral radius of graphs with cut vertices, J. Combin. Theory Ser. B, 83
(2001) 233–240.
[5] P. Bhunia, S. Bag and K. Paul, Bounds for eigenvalues of the adjacency matrix of a graph, J. Interdiscip. Math.,
22 (2019) 415–431.
[6] D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs - Theory and Application, Academic Press, New York,
1980.
[7] A. S. Bonifácio, C. T. M. Vinagre and N. M. M. Abreu, Constructing pairs of equienergetic and non-cospectral
graphs, Appl. Math. Lett., 21 (2008) 338–341.
[8] V. Brankov, D. Stevanović and I. Gutman, Equienergetic chemical trees, J. Serb. Chem. Soc., 69 (2004) 549–553.
[9] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz., 103 (1978) 1–22.
[10] I. Gutman and B. Furtula, Energies of Graphs – Survey, Census, Bibilography, Center for Scientific Research,
Serbian Academy of Sciences and Arts, Kragujevac, 2019.
[11] I. Gutman and H. Ramane, Research on graph energies in 2019, MATCH Commun. Math. Comput. Chem., 84
(2020) 277–292.
[12] G. Indulal, A. Vijayakumar, On a pair of equienergetic graphs, MATCH Commun. Math. Comput. Chem., 55 (2006)
83–90.
[13] G. Indulal and A. Vijayakumar, Equienergetic self-complementary graphs, Czechoslovak Math. J., 58 (2008) 911–
919.
[14] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New York, 2012.
[15] H. S. Ramane, Energy of graphs, in: Handbook of Research on Advanced Applications of Graph Theory in Modern
Society, (Eds. M. Pal, S. Samanta, A. Pal), IGI Global, Hershey PA, (2020) 267–296.
[16] H. S. Ramane, K. Ashoka, B. Parvathalu, D. Patil and I. Gutman, On complementary equienergetic strongly regular
graphs, Discrete Math. Lett., 4 (2020) 50–55.
[17] H. S. Ramane, I. Gutman, H. B. Walikar and S. B. Halakarni, Another class of equienergetic graphs, Kragujevac J.
Math., 26 (2004) 15–18.
[18] H. S. Ramane, I. Gutman, H. B. Walikar and S. B. Halakarni, Equienergetic complement graphs, Kragujevac J.
Sci., 27 (2005) 67–74.
[19] H. S. Ramane, B. Parvathalu, D. D. Patil and K. Ashoka, Graphs equienergetic with their complements, MATCH
Commun. Math. Comput. Chem., 82 (2019) 471–480.
[20] H. S. Ramane and H. B. Walikar, Construction of equienergetic graphs, MATCH Commun. Math. Comput. Chem.,
57 (2007) 203–210.
[21] H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R. Jog and I. Gutman, Equienergetic
graphs, Kragujevac J. Math., 26 (2004) 5–13.
[22] H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R. Jog and I. Gutman, Spectra and
energies of iterated line graphs of regular graphs, Appl. Math. Lett., 18 (2005) 679–682.
[23] H. Sachs, Über selbstkomplementare Graphen, Publ. Math. Debrecen, 9 (1962) 270–288.
[24] G. B. S. Shalini and M. Joseph, New results on equienergetic graphs of small order, Int. J. Comput. Appl. Math.,
12 (2017) 595–602.
[25] I. Stanković, M. Milos̆ević, D. Stevanović, Small and not so small equienergetic graphs, MATCH Commun. Math.
Comput. Chem., 61 (2009) 443–450.
[26] H. B. Walikar, H. S. Ramane, I. Gutman, S. B. Halkarni, On equienergetic graphs and molecular graphs, Kragujevac
J. Sci., 29 (2007) 73–84.
Volume 11, Issue 1
March 2022
Pages 45-51
  • Receive Date: 24 January 2021
  • Revise Date: 21 August 2021
  • Accept Date: 31 August 2021
  • Published Online: 01 March 2022