[1] D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs, Theory and Application, Academic Press, Inc., New
York, 1980.
[2] D. Cvetković, P. Rowlinson and S. Simić, An introduction to the theory of graph spectra, London Mathematical
Society Student Texts, 75, Cambridge University Press, Cambridge, 2010.
[3] D. Cvetković, P. Rowlinson and S. Simić, Eigenvalue bounds for the signless laplacian,Publ. Inst. Math., (Beograd)
81 (2007) 11–27.
[4] C .S. Edwards, C. H. Elphick, Lower bounds for the clique and the chromatic numbers of a graph, Discrete Appl.
Math., 5 (1983) 51–64.
[5] A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, Second
Edition, Springer, New York, 2011.
[6] V. Nikiforov, Chromatic number and spectral radius, Linear Algebra Appl., 426 (2007) 810–814.
[7] M. R. Oboudi, A relation between the signless Laplacian spectral radius of complete multipartite graphs and
majorization, Linear Algebra Appl., 565 (2019) 225–238.
[8] M. R. Oboudi, Distance spectral radius of complete multipartite graphs and majorization, Linear Algebra Appl.,
583 (2019) 134–145.
[9] M. R. Oboudi, Majorization and the spectral radius of starlike trees, J. Comb. Optim., 36 (2018) 121–129.
[10] M. R. Oboudi, On the difference between the spectral radius and maximum degree of graphs, Algebra Discrete
Math., 24 (2017) 302–307.
[11] M. R. Oboudi, On the largest real root of independence polynomials of graphs, an ordering on graphs, and starlike
trees, arXiv:1303.3222.
[12] M. R. Oboudi, On the third largest eigenvalue of graphs, Linear Algebra Appl., 503 (2016) 164–179.
[13] H. S. Wilf, Spectral bounds for the clique and independence numbers of graphs, J. Combin. Theory Ser. B, 40
(1986) 113–117.
[14] H. S. Wilf, The eigenvalues of a graph and its chromatic number, J. London Math. Soc., 42 (1967) 330–332.
[15] G. Yu, Y. Wu and J. Shu, Signless Laplacian spectral radii of graphs with given chromatic number, Linear Algebra
Appl., 435 (2011) 1813–1822.