[1] A. Alir and D. Dimitrov, On the extremal graphs with respect to bond incident degree indices, Discrete Appl. Math.,
238 (2018) 32–40.
[2] M. Barysz, D. Plavsic and N. Trinajstic, A note on the Topological indices, MATCH Commun. Math. Comput. Chem.,
19 (1986) 89–116.
[3] M. M. Belavadi and T. A. Mangam, Platt number of total graphs, International Journal of Applied Mathematics, 31 (5)
(2018).
[4] M. Bhanumathi, K. Easu Julia Rani and S. Balachandran, The edge version of inverse sum indeg index connected
graph, International Journal of Mathematical Archive, 7 (2016) 8–12.
[5] B. Bhanumathi and P. Erdos, Graphs of extremal weights, Ars comb., 50 (1998) 225.
[6] R. Cruz, I. Gutman and J. Rada, Sombor index of chemical graphs, Appl. Math. Comput., 399 (2021) 126018.
[7] K. C. Das, A. S. Cevik, I. N. Cangul and Y. Shang, On Sombor index, Symmetry, 13 (2021) 140.
[8] J. Devillers and A. T. Balaban and (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon
and Breach, Amsterdam, (1999).
[9] T. Došlic, T. Réti, and A. Ali. On the structure of graphs with integer Sombor indices, Discrete Math. Lett., 7 (2021)
1–4.
[10] S. Filipovski, Relations between Sombor index and some topological indices, Iran. J. Math. Chem., 12 (2021) 19–26.
[11] Y. Gao, W. Sajjad, A. Q. Baig and M. R. Farahani, The edge version of randic, zagreb, atom bond connectivity and
geometric-arithmetic indices of HAC5 C6 C7 [P, Q] nanotube, International Journal of Pure and Applied Mathematics,
115 (2017) 405–418.
[12] N. Ghanbari, On the Sombor characteristic polynomial and Sombor energy of a graph, Comput. Appl. Math. Journal
Profile, 41 (2022) 1–14.
[13] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Com-
put. Chem., 86 (2021) 11–16.
[14] I. Gutman and E. Estrada, Topological indices based on the line graph of the molecular graph, Journal of chemical
information and computer sciences, 36 (1996) 541–543.
[15] I. Gutman and K. Ch. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50 (2004)
83–92.
[16] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons,
Chem. Phys. Lett., 17 (1972) 535–538.
[17] F. Harary, Graph theory, Addison-Wesley, Reading Mass, (1969).
[18] R. L. Hemminger and L. W. Beineke, Line graphs and line digraphs, Selected Topics in Graph Theory, Acad. Press
Inc., (1978) 271–305.
19] S. M. Kang, M. A. Zahid, W. Nazeer and W. Gao, Calculating the degree based topological indices of dendrimers,
Open Chemistry, 16 (2018) 681–688.
[20] V. R. Kulli, Edge version of inverse sum indeg index of certain nanotubes and nanotori, 7 (2017) 855–858.
[21] V. R. Kulli, Edge version of F-index, general sum connectivity index of certain nanotubes, Annals of Pure and Applied
Mathematics, 14 (2017) 449–455.
[22] V. R. Kulli, Multiplicative Connectivity Indices of Nanostructures, Lap lembert Academic Publishing, (2018) 1–10.
[23] V. R. Kulli, Sombor index of certain graph operators, Int. J. Eng. Sci. Res. Technol., 10 (2021) 127–134.
[24] H. Liu, I. Gutman, L. You and Y. Huang, Sombor index: Review of extremal results and bounds, J. Math. Chem., 66
(2022) 771–798.
[25] A. Milicevic, S. Nikolic and N. Trinajstic, On reformulated Zagreb indices, Molecular diversity, 8 (2004) 393–399.
[26] G. R. Newkome, N. C. Moorefield and F. Vogtle, Dendrimers and dendrons: concepts, syntheses, applications, Wein-
heim: Wiley-vch, 632 (2001).
[27] N. De, Some bounds of reformulated Zagreb indices, Appl. Math. Sci., 6 (2012) 5005–5012.
[28] M. R. Oboudi, On graphs with integer Sombor index, Journal of Applied Mathematics and Computing, (2022) 1–12.
[29] K. Pattabiraman and A. Santhakumar, Bounds on first reformulated Zagreb index of graph, Casp. J. Math. Sci, 7 (2018) 25–35.
[30] J. R. Platt, Prediction of isomeric differences in paraffin properties, J. Phys. Chem., 56 (1952) 328–336.
[31] J. Rada, J. M. Rodriguez and J. M. Sigarreta, General properties on Sombor indices, Discrete Appl. Math., 299 (2021)
87–97.
[32] M. Randic, Characterization of molecular branching, Journal of the American Chemical Society, 97 (1975) 6609–6615.
[33] I. Redzepovic, Chemical applicability of Sombor indices, J. Serb. Chem. Soc., 86 (2021) 445–457.
[34] T. Reti, T. Doslic and A. Ali, On the Sombor index of graphs, Contrib. Math., 3 (2021) 11–18.
[35] Y. Shang, Sombor index and degree-related properties of simplicial networks, Appl. Math. Comput., 419 (2022)
126881.
[36] Z. Wang, Y. Mao, Y. Li and B. Furtula, On relations between Sombor and other degree-based indices, J. Appl. Math.
Comput., 68 (2022) 1–17.
[37] H. Yang, W. Sajjad, A. Q. Baig and M. R. Farahani, The Edge Version of Randic, Zagreb, Atom Bond Connectivity
and Geometric-Arithmetic Indices of N AP Q Nanotube, International journal of advanced biotechnology and research,
8 (2017) 1582–1589.
[38] S. Zafar, R. Nazir, M. S. Sardar and Z. Zahid, Edge version of harmonic index and harmonic polynomial of some
classes of graphs, textbf34 (2017) 479–486.
[39] B. Zhou and N. Trinajstic, Some properties of the reformulated Zagreb indices, Journal of mathematical chemistry, 48
(2010) 714–719.
[40] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem., 52 (2004).
[41] T. Zhou, Z. Lin and L. Miao, The Sombor index of trees and unicyclic graphs with given maximum degree, arXiv
preprint arXiv, (2021).