The reformulated sombor index of a graph

Document Type : Research Paper


Department of Mathematisch, Bangalore University, Jnana Bharathi Campus, Bangalore -560 056, India


In 2021, Gutman invented a novel degree-based topological index called the Sombor index, inspired by a geometric interpretation of degree-radii of the edges and invited researchers to investigate their mathematical properties and chemical meanings. The Sombor index was reformulated in terms of the edge degree instead of the vertex degree as the original Sombor Index. In this paper, we compute the exact values of a certain class of graphs. Also, some bounds in terms of the order, size, minimum/maximum degrees and other topological indices are obtained.


Main Subjects

[1] A. Alir and D. Dimitrov, On the extremal graphs with respect to bond incident degree indices, Discrete Appl. Math.,
238 (2018) 32–40.
[2] M. Barysz, D. Plavsic and N. Trinajstic, A note on the Topological indices, MATCH Commun. Math. Comput. Chem.,
19 (1986) 89–116.
[3] M. M. Belavadi and T. A. Mangam, Platt number of total graphs, International Journal of Applied Mathematics, 31 (5)
[4] M. Bhanumathi, K. Easu Julia Rani and S. Balachandran, The edge version of inverse sum indeg index connected
graph, International Journal of Mathematical Archive, 7 (2016) 8–12.
[5] B. Bhanumathi and P. Erdos, Graphs of extremal weights, Ars comb., 50 (1998) 225.
[6] R. Cruz, I. Gutman and J. Rada, Sombor index of chemical graphs, Appl. Math. Comput., 399 (2021) 126018.
[7] K. C. Das, A. S. Cevik, I. N. Cangul and Y. Shang, On Sombor index, Symmetry, 13 (2021) 140.
[8] J. Devillers and A. T. Balaban and (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon
and Breach, Amsterdam, (1999).
[9] T. Došlic, T. Réti, and A. Ali. On the structure of graphs with integer Sombor indices, Discrete Math. Lett., 7 (2021)
[10] S. Filipovski, Relations between Sombor index and some topological indices, Iran. J. Math. Chem., 12 (2021) 19–26.
[11] Y. Gao, W. Sajjad, A. Q. Baig and M. R. Farahani, The edge version of randic, zagreb, atom bond connectivity and
geometric-arithmetic indices of HAC5 C6 C7 [P, Q] nanotube, International Journal of Pure and Applied Mathematics,
115 (2017) 405–418.
[12] N. Ghanbari, On the Sombor characteristic polynomial and Sombor energy of a graph, Comput. Appl. Math. Journal
Profile, 41 (2022) 1–14.
[13] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Com-
put. Chem., 86 (2021) 11–16.
[14] I. Gutman and E. Estrada, Topological indices based on the line graph of the molecular graph, Journal of chemical
information and computer sciences, 36 (1996) 541–543.
[15] I. Gutman and K. Ch. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50 (2004)
[16] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons,
Chem. Phys. Lett., 17 (1972) 535–538.
[17] F. Harary, Graph theory, Addison-Wesley, Reading Mass, (1969).
[18] R. L. Hemminger and L. W. Beineke, Line graphs and line digraphs, Selected Topics in Graph Theory, Acad. Press
Inc., (1978) 271–305.
19] S. M. Kang, M. A. Zahid, W. Nazeer and W. Gao, Calculating the degree based topological indices of dendrimers,
Open Chemistry, 16 (2018) 681–688.
[20] V. R. Kulli, Edge version of inverse sum indeg index of certain nanotubes and nanotori, 7 (2017) 855–858.
[21] V. R. Kulli, Edge version of F-index, general sum connectivity index of certain nanotubes, Annals of Pure and Applied
Mathematics, 14 (2017) 449–455.
[22] V. R. Kulli, Multiplicative Connectivity Indices of Nanostructures, Lap lembert Academic Publishing, (2018) 1–10.
[23] V. R. Kulli, Sombor index of certain graph operators, Int. J. Eng. Sci. Res. Technol., 10 (2021) 127–134.
[24] H. Liu, I. Gutman, L. You and Y. Huang, Sombor index: Review of extremal results and bounds, J. Math. Chem., 66
(2022) 771–798.
[25] A. Milicevic, S. Nikolic and N. Trinajstic, On reformulated Zagreb indices, Molecular diversity, 8 (2004) 393–399.
[26] G. R. Newkome, N. C. Moorefield and F. Vogtle, Dendrimers and dendrons: concepts, syntheses, applications, Wein-
heim: Wiley-vch, 632 (2001).
[27] N. De, Some bounds of reformulated Zagreb indices, Appl. Math. Sci., 6 (2012) 5005–5012.
[28] M. R. Oboudi, On graphs with integer Sombor index, Journal of Applied Mathematics and Computing, (2022) 1–12.
[29] K. Pattabiraman and A. Santhakumar, Bounds on first reformulated Zagreb index of graph, Casp. J. Math. Sci, 7 (2018) 25–35.
[30] J. R. Platt, Prediction of isomeric differences in paraffin properties, J. Phys. Chem., 56 (1952) 328–336.
[31] J. Rada, J. M. Rodriguez and J. M. Sigarreta, General properties on Sombor indices, Discrete Appl. Math., 299 (2021)
[32] M. Randic, Characterization of molecular branching, Journal of the American Chemical Society, 97 (1975) 6609–6615.
[33] I. Redzepovic, Chemical applicability of Sombor indices, J. Serb. Chem. Soc., 86 (2021) 445–457.
[34] T. Reti, T. Doslic and A. Ali, On the Sombor index of graphs, Contrib. Math., 3 (2021) 11–18.
[35] Y. Shang, Sombor index and degree-related properties of simplicial networks, Appl. Math. Comput., 419 (2022)
[36] Z. Wang, Y. Mao, Y. Li and B. Furtula, On relations between Sombor and other degree-based indices, J. Appl. Math.
Comput., 68 (2022) 1–17.
[37] H. Yang, W. Sajjad, A. Q. Baig and M. R. Farahani, The Edge Version of Randic, Zagreb, Atom Bond Connectivity
and Geometric-Arithmetic Indices of N AP Q Nanotube, International journal of advanced biotechnology and research,
8 (2017) 1582–1589.
[38] S. Zafar, R. Nazir, M. S. Sardar and Z. Zahid, Edge version of harmonic index and harmonic polynomial of some
classes of graphs, textbf34 (2017) 479–486.
[39] B. Zhou and N. Trinajstic, Some properties of the reformulated Zagreb indices, Journal of mathematical chemistry, 48
(2010) 714–719.
[40] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem., 52 (2004).
[41] T. Zhou, Z. Lin and L. Miao, The Sombor index of trees and unicyclic graphs with given maximum degree, arXiv
preprint arXiv, (2021).
  • Receive Date: 21 June 2022
  • Revise Date: 17 October 2022
  • Accept Date: 24 October 2022
  • Published Online: 01 March 2024