[1] G. I. Bell, Solving triangular peg solitaire, J. Integer Seq., 11 (2008) 22 pp.
[2] R. A. Beeler, A. D. Gray and D. P. Hoilman, Constructing solvable graphs in peg solitaire, Bull. Inst. Combin. Appl., 66 (2012) 89–96.
[3] R. A. Beeler, H. Green and R. T. Harper, Peg solitaire on caterpillars, Integers, 17 (2017) 14 pp.
[4] R. A. Beeler and D. P. Hoilman, Peg solitaire on graphs, Discrete Math., 311 (2011) 2198–2202.
[5] R. A. Beeler and D. P. Hoilman, Peg solitaire on the windmill and the double star graphs, Australas. J. Combin., 52 (2012) 127–134.
[6] R. A. Beeler and T. K. Rodriguez, Fool’s solitaire on graphs, Involve, 5 (2012) 473–480.
[7] R. A. Beeler and C. A. Walvoort, Peg solitaire on trees with diameter four, Australas. J. Combin., 63 (2015) 321–332.
[8] J.-H. de Wiljes and M. Kreh, Peg solitaire on banana trees, Bull. Inst. Combin. Appl., 90 (2020) 63–86.
[9] J.-H. de Wiljes and M. Kreh, Path-stick solitaire on graphs, Theory Appl. Graphs, 9 no. 2 (2022) 11 pp.
[10] J. Engbers and C. Stocker, Reversible peg solitaire on graphs, Discrete Math., 338 (2015) 2014–2019.
[11] M. Kreh and J.-H. de Wiljes, Peg solitaire on Cartesian products of graphs, Graphs Comb., 37 (2021) 907–917.
[12] S. Loeb and J. Wise, Fool’s solitaire on joins and Cartesian products of graphs, Discrete Math., 338 (2015) 66–71.
[13] N. Matsumoto, Peg solitaire on graphs with large maximum degree, Asian-Eur. J. Math., 15 (2022) 9 pp.