Let $d_{n,m}=\big[\frac{2n+1-\sqrt{17+8(m-n)}}{2}\big]$ and $E_{n,m}$ be the graph obtained from a path $P_{d_{n,m}+1}=v_0v_1 \cdots v_{d_{n,m}}$ by joining each vertex of $K_{n-d_{n,m}-1}$ to $v_{d_{n,m}}$ and $v_{d_{n,m}-1}$, and by joining $m-n+1-{n-d_{n,m}\choose 2}$ vertices of $K_{n-d_{n,m}-1}$ to $v_{d_{n,m}-2}$. Zhang, Liu and Zhou [On the maximal eccentric connectivity indices of graphs, Appl. Math. J. Chinese Univ., in press] conjectured that if $d_{n,m}\geqslant 3$, then $E_{n,m}$ is the graph with maximal eccentric connectivity index among all connected graph with $n$ vertices and $m$ edges. In this note, we prove this conjecture. Moreover, we present the graph with maximal eccentric connectivity index among the connected graphs with $n$ vertices. Finally, the minimum of this graph invariant in the classes of tricyclic and tetracyclic graphs are computed.
D. B. West (1996). Introduction to G raph Theory. Prentice Hall, Inc., Upper Saddle River, NJ. V. Sharma, R. Goswami and A. K. Madan (1997). Eccentric connectivity index: a novel highly discriminating topological descriptor for structure property and structure activity studies. J. Chem. Inf. Comput. Sci.. 37, 273-282 A. R. Ashrafi, T. Doslic and M. Saheli (2011). The eccentric connectivity index of TUC4 C8 (R) nanotubes. MATCH Commun. Math. Comput. Chem.. 65 (1), 221-230 A. R. Ashrafi, M. Saheli and M. Ghorbani (2011). The eccentric connectivity index of nanotubes and nanotori. J. Comput. Appl. Math.. 235, 4561-4566 G. Yu, L. Feng and A. Ilic (2011). On the eccentric distance sum of trees and unicyclic graphs. J. Math. Anal. Appl.. 375, 99-107 B. Zhou and Z. Du (2010). On eccentric connectivity index. MATCH Commun. Math. Comput. Chem.. 63, 181-198 A. Ilic and I. Gutman (2011). Eccentric connectivity index of chemical trees. MATCH Commun. Math. Comput. Chem.. 65, 731-744 M. J. Morgan, S. Mukwembi and H. C. Swart (2011). On the eccentric connectivity index of a graph. Discrete Math.. 311, 1229-1234 T. Doslic, M. Saheli and D. Vukicevic (2010). Eccentric Connectivity Index: Extremal Graphs and Values. Iranian J. Math. Chem.. 1 (2), 45-56 J. Zhang, Z. Liu and B. Zhou (in press). On the maximal eccentric connectivity indices of graphs. Appl. Math. J. Chinese Univ..
Tavakoli, M. , Rahbarnia, F. , Mirzavaziri, M. and Ashrafi, A. R. (2014). Complete solution to a conjecture of Zhang-Liu-Zhou. Transactions on Combinatorics, 3(4), 55-58. doi: 10.22108/toc.2014.5986
MLA
Tavakoli, M. , , Rahbarnia, F. , , Mirzavaziri, M. , and Ashrafi, A. R. . "Complete solution to a conjecture of Zhang-Liu-Zhou", Transactions on Combinatorics, 3, 4, 2014, 55-58. doi: 10.22108/toc.2014.5986
HARVARD
Tavakoli, M., Rahbarnia, F., Mirzavaziri, M., Ashrafi, A. R. (2014). 'Complete solution to a conjecture of Zhang-Liu-Zhou', Transactions on Combinatorics, 3(4), pp. 55-58. doi: 10.22108/toc.2014.5986
CHICAGO
M. Tavakoli , F. Rahbarnia , M. Mirzavaziri and A. R. Ashrafi, "Complete solution to a conjecture of Zhang-Liu-Zhou," Transactions on Combinatorics, 3 4 (2014): 55-58, doi: 10.22108/toc.2014.5986
VANCOUVER
Tavakoli, M., Rahbarnia, F., Mirzavaziri, M., Ashrafi, A. R. Complete solution to a conjecture of Zhang-Liu-Zhou. Transactions on Combinatorics, 2014; 3(4): 55-58. doi: 10.22108/toc.2014.5986