Let $d_{n,m}=\big[\frac{2n+1-\sqrt{17+8(m-n)}}{2}\big]$ and $E_{n,m}$ be the graph obtained from a path $P_{d_{n,m}+1}=v_0v_1 \cdots v_{d_{n,m}}$ by joining each vertex of $K_{n-d_{n,m}-1}$ to $v_{d_{n,m}}$ and $v_{d_{n,m}-1}$, and by joining $m-n+1-{n-d_{n,m}\choose 2}$ vertices of $K_{n-d_{n,m}-1}$ to $v_{d_{n,m}-2}$. Zhang, Liu and Zhou [On the maximal eccentric connectivity indices of graphs, Appl. Math. J. Chinese Univ., in press] conjectured that if $d_{n,m}\geqslant 3$, then $E_{n,m}$ is the graph with maximal eccentric connectivity index among all connected graph with $n$ vertices and $m$ edges. In this note, we prove this conjecture. Moreover, we present the graph with maximal eccentric connectivity index among the connected graphs with $n$ vertices. Finally, the minimum of this graph invariant in the classes of tricyclic and tetracyclic graphs are computed.
D. B. West (1996). Introduction to G raph Theory. Prentice Hall, Inc., Upper Saddle River, NJ. V. Sharma, R. Goswami and A. K. Madan (1997). Eccentric connectivity index: a novel highly discriminating topological descriptor for structure property and structure activity studies. J. Chem. Inf. Comput. Sci.. 37, 273-282 A. R. Ashrafi, T. Doslic and M. Saheli (2011). The eccentric connectivity index of TUC4 C8 (R) nanotubes. MATCH Commun. Math. Comput. Chem.. 65 (1), 221-230 A. R. Ashrafi, M. Saheli and M. Ghorbani (2011). The eccentric connectivity index of nanotubes and nanotori. J. Comput. Appl. Math.. 235, 4561-4566 G. Yu, L. Feng and A. Ilic (2011). On the eccentric distance sum of trees and unicyclic graphs. J. Math. Anal. Appl.. 375, 99-107 B. Zhou and Z. Du (2010). On eccentric connectivity index. MATCH Commun. Math. Comput. Chem.. 63, 181-198 A. Ilic and I. Gutman (2011). Eccentric connectivity index of chemical trees. MATCH Commun. Math. Comput. Chem.. 65, 731-744 M. J. Morgan, S. Mukwembi and H. C. Swart (2011). On the eccentric connectivity index of a graph. Discrete Math.. 311, 1229-1234 T. Doslic, M. Saheli and D. Vukicevic (2010). Eccentric Connectivity Index: Extremal Graphs and Values. Iranian J. Math. Chem.. 1 (2), 45-56 J. Zhang, Z. Liu and B. Zhou (in press). On the maximal eccentric connectivity indices of graphs. Appl. Math. J. Chinese Univ..
Tavakoli, M., Rahbarnia, F., Mirzavaziri, M., Ashrafi, A. (2014). Complete solution to a conjecture of Zhang-Liu-Zhou. Transactions on Combinatorics, 3(4), 55-58. doi: 10.22108/toc.2014.5986
MLA
Mostafa Tavakoli; F. Rahbarnia; M. Mirzavaziri; A. R. Ashrafi. "Complete solution to a conjecture of Zhang-Liu-Zhou". Transactions on Combinatorics, 3, 4, 2014, 55-58. doi: 10.22108/toc.2014.5986
HARVARD
Tavakoli, M., Rahbarnia, F., Mirzavaziri, M., Ashrafi, A. (2014). 'Complete solution to a conjecture of Zhang-Liu-Zhou', Transactions on Combinatorics, 3(4), pp. 55-58. doi: 10.22108/toc.2014.5986
VANCOUVER
Tavakoli, M., Rahbarnia, F., Mirzavaziri, M., Ashrafi, A. Complete solution to a conjecture of Zhang-Liu-Zhou. Transactions on Combinatorics, 2014; 3(4): 55-58. doi: 10.22108/toc.2014.5986