The harmonic index of a connected graph $G$, denoted by $H(G)$, is defined as $H(G)=\sum_{uv\in E(G)}\frac{2}{d_u+d_v}$ where $d_v$ is the degree of a vertex $v$ in G. In this paper, expressions for the Harary indices of the join, corona product, Cartesian product, composition and symmetric difference of graphs are derived.
M. Azar (2014). Sharp lowerb ounds on the Narumi-Katayama index of graph operations. Appl. Math. Comput.. 239, 409-421 K. C. Das, K. Xu, I. N. Cangul, A. S. Cevik and A. Graovac (2013). On the Harary index of graph operations. J. Inequal. Appl.. , 1-16 N. De, A. Pal, S. Nayeem and M. Abu (2014). Connective eccentric index of some graph operations. http://arXiv:1406.0378. E. Estrada, L. Torres, L. Ro driguez and I. Gutman (1998). An Atom-b ond connectivity index: Mo delling the enthalpy of
formation of alkanes. Indian J. Chem.. 37, 849-855 S. Fajtlowicz (1987). On conjectures of Graffiti. II. Congr. Numer. 60, 189-197 G. H. Fath-Tabar, A. Hamzeh and S. Hossein-Zadeh (2010). GA_2 index of some graph operations, Filomat. 24, 21-28 F. Harary (1994). Graph theory. Reading, MA: Addison-Wesley. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi (2008). The hyper-Wiener index of graph operations. Comput. Math. Appl.. 56, 1402-1407 M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi (2009). The first and second Zagreb indices of some graph
op rations. Discrete Appl. Math.. 157, 804-811 V. Lokesha, B. S. Shetty, P. S. Ranjini, I. N. Cangul and A. S. Cevik (2013). New b ounds for Randic and GA indices,. J. Inequal. Appl.. , 1-7 K. Pattabiraman and M. Vijayaragavan (2013). Reciprocal degree distance of some graph operations. Trans. Comb.. 2, 13-24 M. Randic (1975). Characterization of molecular branching. J. Am. Chem. Soc.. 97, 6609-6615 B. Sh. Shetty, V. Lokesha, P. S. Ranjini and K. C. Das (2012). Computing some topological indices of Smart polymer. Digest Journal of Nanomaterials and Biostructures. 7, 1097-1102 X. Xu (2012). Relationships between harmonic index and other
topological indices. Appl. Math. Sci.. 6, 2013-2018 I. G. Yero and J. A. Ro driguez-Velazquez (2011). On the Randic index of corona product graph. International Scholarly Research Notices. L. Zhong (2012). The harmonic index for graphs. Appl. Math. Lett.. 25, 561-566
Shwetha Shetty, B. , Lokesha, V. and Ranjini, P. S. (2015). On the harmonic index of graph operations. Transactions on Combinatorics, 4(4), 5-14. doi: 10.22108/toc.2015.7389
MLA
Shwetha Shetty, B. , , Lokesha, V. , and Ranjini, P. S. . "On the harmonic index of graph operations", Transactions on Combinatorics, 4, 4, 2015, 5-14. doi: 10.22108/toc.2015.7389
HARVARD
Shwetha Shetty, B., Lokesha, V., Ranjini, P. S. (2015). 'On the harmonic index of graph operations', Transactions on Combinatorics, 4(4), pp. 5-14. doi: 10.22108/toc.2015.7389
CHICAGO
B. Shwetha Shetty , V. Lokesha and P. S. Ranjini, "On the harmonic index of graph operations," Transactions on Combinatorics, 4 4 (2015): 5-14, doi: 10.22108/toc.2015.7389
VANCOUVER
Shwetha Shetty, B., Lokesha, V., Ranjini, P. S. On the harmonic index of graph operations. Transactions on Combinatorics, 2015; 4(4): 5-14. doi: 10.22108/toc.2015.7389